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Analytical Study of the Subsonic Wing-Rock
Phenomenon for Slender Delta Wings

A. H. Nayfeh,* J. M. Elzebda,t and D. T. MookJ
Virginia Polytechnic Institute and State University, Blacksburg, Virginia

An analytic expression describing the aerodynamic roll moment has been obtained from the numerical
simulation of wing rock. This expression is used in the equation governing the rolling motion of a delta wing
around its midspan axis. The result is used to construct phase planes, which reveal the general global nature of
wing rock—stable limit cycles, unstable foci, saddle points, and domains of initial conditions leading to
oscillatory motion and divergence. An asymptotic approximation to the solution of the governing equation is
obtained; this result provides expressions for the amplitudes and frequencies of limit cycles. The present analysis
provides a penetrating global view of the wing-rock phenomenon.

Introduction

IN 1981 and 1982, respectively, wind-tunnel experiments
were conducted using delta wings of aspect ratio 0.705

mounted on free-to-roll stings.1'2 In both studies, the wings
were placed in a steady airstream and the angle of attack was
increased until rolling developed spontaneously. The arrange-
ment is depicted in Fig. 1. Nguyen et al.1 placed the axis of
rotation below the centerline of the wing (d 5*0). Levin and
Katz placed the axis of rotation on the centerline (d= 0),
housing the bearing assembly inside a fuselage-like tube. In
1983, after considering the data, Ericsson3 concluded that
wing rock is caused by the symmetric arrangement of the
leading-edge-vortex system becoming unstable, never by vor-
tex breakdown when the leading-edge sweep is more than 74
deg.

Later, Konstadinopoulos,4 Konstadinopoulos et al.,5 and
Mook and Nayfeh6 developed a numerical simulation of these
wind-tunnel experiments. In their simulations, the equations
governing the motion of the wing were integrated numerically.
The general unsteady vortex-lattice method was used to pre-
dict the aerodynamic loads. There is a complication with this
approach: the equations of motion cannot be integrated unless
the loads are known, and the loads cannot be calculated unless
the motion is known. To break this impasse, Konstadinopou-
los et al.5 developed an iteration scheme based on the predic-
tor-corrector method. The resulting algorithm integrates for-
ward in time, iterating at each time step until loads and motion
are consistent. The results predict both simultaneously and
interactively the motion of the wing and the flowfield. The
prediction of the flowfield includes the wake where the history
of the motion resides. The model simulates hysteresis, aerody-
namic damping, and leading-edge separation. It is not limited
by angle of attack, twist, camber, or planform as long as
vortex bursting does not occur in the near vicinity of the wing.

The numerical simulation predicts onset angles and the
periods and amplitudes of the ensuing limit cycles in close
agreement with those from the first two sets of experiments.
Moreover, the simulation shows that the symmetric arrange-
ment of the leading-edge-vortex system at zero roll becomes
unstable. The asymmetry causes a roll moment to develop.
But as the angle of roll increases, the change in the apparent
direction of the freestream causes the direction of the moment
and, eventually, the direction of rotation to change.
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Because the simulation provides the loads as functions of
time, it is possible to develop an analytic expression for the
roll moment.4'5 The result is a third-order polynomial in roll
angle and roll rate that fits the numerical data extremely well
from the start of the motion through the development of limit
cycles or decay, depending on the angle of attack. In the
present paper, we substitute this expression into the equation
of motion and obtain phase planes and approximate solutions
using the method of multiple scales. The results provide a
useful new analytic simulation of the experiments. The present
paper describes a general approach that could be applied to
other similar problems after an analytic expression for the
loads has been found. Of course, the accuracy of the analytic
results are limited by the accuracy of the expression for the
loads.

The Problem
We consider a uniform, flat, thin wing, supported on a

free-to-roll sting as shown in Fig. 1. The equation of motion
is

= CiC/ - C2</> (1)
where 0 is the roll angle, c\ is the aerodynamic roll-moment
coefficient supplied by the unsteady-vortex-lattice method,
and

cl = pScL^/21^ (2)

C2 = (3)

Fig. 1 Schematic representation of a delta wing on a free-to-roll
sting: d 5*0 corresponds to the experiments of Nguyen et al. and d =0
corresponds to the experiments of Levin and Katz.
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where p is the density of the air, S the area of the planform, c
the chord, L the characteristic length, 7^ the moment of
inertia with respect to the midspan axis along the chord, nx the
damping coefficient for the sting bearing, and Uc the charac-
teristic speed. The dot in Eq. (1) implies the derivative with
respect to the nondimensional time

r = (Uc/Lc)t (4)

In Refs. 4 and 5, solutions of Eq. (1) were obtained numer-
ically. The general unsteady vortex-lattice method was used to
predict the loads, and the numerical integration was accom-
plished by a modification of the predictor-corrector method.
That solution predicts both the motion of the wing and of the
fluid simultaneously, fully accounting for dynamic/aerody-
namic interaction. The predicted results for onset angle (i.e.,
the lowest angle of attack for which rolling develops sponta-
neously) and amplitudes and periods of the ensuing limit
cycles agree very well with the observations in Refs. 1 and 2.
Here we provide an analytical solution. To obtain such a
solution, one must have analytic expression for c/. Such an
expression is obtained next.

It is convenient to use a specific example to explain the
procedure. We choose the following delta wing:

Leading-edge-sweep angle = 80 deg
Aspect ratio = 0.705
Chord = 0.429 m
Lc = chord/4
Area = 0.0324 m2

Mass = 0.284 kg
/^ = 0.27xlO-3kg-m2

This is the same wing used by Levin and Katz.2 In addition, we
choose p^ = 0.12 x 10 ~2 kg/m3 and Uc = 15 m/s. These val-
ues for the density and speed of the airstream agree with the
test conditions in the experiments of Levin and Katz. Finally,
we choose the damping coefficient for the bearing in the sting
to be IJLX = 0.378 x 10 ~4 kg-m4/s. All of the numerical results
were obtained using only this one value of nx; this value was
found by trial and error to be the only value for which onset
angle, period, and amplitude agree with experiment. These
choices lead to Ci = 0.354 and c2 = 0.001.

One can readily fit a polynomial to the roll-moment calcu-
lated in the numerical simulation; it was found that the follow-
ing gives virtually perfect agreement:

(5)

The values of the #/ depend on the angle of attack; they are
given in Table 1. In Fig. 2, both the calculated moment and
the moment given by Eq. (5) are shown as functions of time
for two angles of attack, one stable (Fig. 2a) and one unsta-
ble (Fig. 2b). Equation (5) fits the calculated moment through
the transients and into the regime where steady-state motion
exists.

The form for c/ as given in Eq. (5) evolved from a much
more general beginning, which included a total 12 terms in a
fifth-order polynomial. Seven of the terms were sytematically
eliminated because their contributions were small. The general
form recognized that certain symmetries must exist; e.g., a
constant would remove 0 = 0 from the equilibrium points,
and even powers of <t> would show the moment to be biased in
one direction.

Table 1. Coefficients in the analytical expression for the roll
moment, Eq. (5), at different angles of attack

a
15
21.5
22.5
25

a\
-0.01026
-0.04207
-0.04681
-0.05686

02
-0.02117
0.01456
0.01966
0.03254

03
-0.14181
0.04714
0.05671
0.07334

04
0.99735

-0.18583
-0.22691
-0.3597

as
-0.83478
0.24234
0.59065
1.4681
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Fig. 2 Roll-moment coefficients as a function of time for a = 15 deg
(a stable case), and a = 25 deg (an unstable case). Each plot contains
the value of cx from the numerical simulation and the value from Eq.
(5). The results are virtually identical.
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Fig. 3 The coefficients in Eq. (6) as functions of the angle of attack.
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Substituting Eq. (5) into Eq. (1) leads to

WING ROCK

(6)

807

where
co2 = —

b2 =
The coefficients in Eq. (6) are plotted as functions of angle of
attack in Fig. 3. The point where />ti is zero corresponds to the
onset of wing rock; the observed onset angle2 is "19-20 deg."
The values of the coefficients can be found for any angle of
attack from these graphs.

Analysis
To analyze Eq. (6), we first construct phase planes for

different angles of attack. Then, we obtain the motion in the
neighborhoods of the various equilibrium positions. Finally,
we analyze the limit-cycle motion.

Phase Planes
We begin by rewriting Eq. (6) as a system of two first-order

equations:

i-Y^Y, (7a)

To find the equilibrium (fixed) positions, we put

It then follows that

l = 0, ± co

(8)

(9)

The nonzero solution exists only when b\ is greater than zero.
Referring to Fig. 3, we see that b\ and ni change sign at the
same angle of attack. At the angle of attack when bi is zero,
two of these equilibrium positions are at infinity. As the angle
of attack increases, these two point move toward the origin.

To determine the character of the motion in a small neigh-
borhood of these equilibrium positions, we introduce the fol-
lowing change in variables (see, e.g., Chap. 3 of Ref. 7):

y1=r10 + Wl (10a)

Y2 = u2 (lOb)

where Y^o is the coordinate of an equlibrium position (Y20 = 0
at all equilibrium points). Substituting Eqs. (10) into Eqs. (7)
and retaining only linear terms in u\ and u2 in the result, one
finds the following:

(lla)

(lib)

This set of linear equations with constant coefficients has a
solution in the form

(12)

(13)

(14)

where in general the eigenvalues are given by

X - Vi{/ii + /*2y2o ± [12fti y?Q - 4co2 + (Ml

At the origin (Y^ = 0), Eq. (13) reduces to
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Fig. 4 Phase planes obtained by numerical integration of Eq. (6): a)
a = 15 deg; b) a = 25 deg (the trajectories initiated in the shaded region
diverge, and all the others approach the stable limit cycle); and c)
many trajectories for the case a= 25 deg.
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Using the results in Fig. 3, one finds that 4a)2>/*2 for the range
of angle of attack considered here (15 deg < a < 25 deg).
Hence, the origin is a stable focus for a<19.5 deg approx-
imately, and an unstable focus otherwise. The transition from
stability to instability of the origin conicides with the appear-
ance of two additional equilibrium points and with the onset
angle of attack observed by Levin and Katz.2 Next, we deter-
mine the character of the motion in a small neighborhood of
the nonzero equilibrium points.

Using the results given in Eq. (9), one finds that for the
equilibrium positions away from the origin

(15)

It follows that regardless of the sign of /^ + ji2c*>2/&i, both
eigenvalues are real; one is positive and the other is negative.
Thus, whenever nonzero equilibrium points exist they are
always saddle points.

These results are summarized in Fig. 4 where the entire
phase planes for a =15 deg (Fig. 4a) and a-25 deg (Fig. 4b)
are shown. These planes were constructed by numerically
integrating Eqs. (7). For a. = 15 deg, the only equilibrium
position is the origin (&i<0), and it is stable. For ot = 25 deg,
there are three equilibrium positions; using the results in Fig.
3, one finds that they are

y10 = 0, ± 50.45 deg (16)

Any motion initiated at a point in the shaded region of Fig.
4b will diverge, not oscillate; that is, the wing will continu-
ously execute complete revolutions. The numerical simulation
presented in Refs. 4 and 5 also predicts divergence. Any
motion initiated at a point in the unshaded region will con-
verge onto the limit cycle; that is, small-amplitude initial
conditions lead to motions that grow to the stable limit cycle
and large-amplitude initial conditions in the unshaded region
lead to motions that decay to the limit cycle. Figure 4c shows
the trajectories for many different initial conditions. Next, we
obtain an asymptotic approximation to the solution of Eq. (6)
and determine formulas for the amplitude and period of the
limit cycle.

Asymptotic Approximation of Limit-Cycle Motion
Here we use the method of multiple scales7'9 to construct an

approximation to the solution of Eq. (6) that is valid for small,
but finite, amplitudes of the motion. We begin by putting

(17)

Here e serves as a measure of the amplitude of the motion
(e < 1), and

T —I n — (18)

There is no e appearing naturally in the statement of this
problem; e is artificial and can be viewed as a bookkeeping
tool. As we shall see, there will be no e in the final result.

Using the chain rule, one finds that derivatives with respect
to t become expansions in terms of partial derivatives with
respect to the fast and slow scales (T0 and T\, respectively):

d2

—5 = £>0
2

where

(19a)

(19b)

(19c)

Substituting Eqs. (17) and (19) into Eq. (6), and then setting
the coefficients of each power of e equal to zero indepen-
dently, one obtains the following:

£>o t/i + co2«i = 0 (20)

(21)

In order to arrive at these equations, one must put eft,\ — n\.
This step forces the damping and nonlinearity to interact and,
consequently, is essential.7'9 Subsequently, we shall return to
the original variables and parameters when we express the
final result.

The solution of Eq. (20) can be expressed as

u\ = a cos(wr0 + 0) (22)

Equation (20) is a partial differential equation (in the fast scale
TQ); consequently, both a and & are functions of the slow scale
TI, not constants. It is convenient to use complex variables, so
that we rewrite Eq. (22) as

exp[ - /

+ cc= y&a.exp(/|8)

= A expO'coTi) + cc (23)

where cc denotes the complex conjugate of the preceding
terms and

A(Ti) = (24)

At this point, A is an arbitrary function of 7i. Subse-
quently, we shall choose A in such a way that renders the
approximation uniformly valid as t (and hence T0) becomes
large.

Next, we substitute Eq. (23) into Eq. (21) and collect terms:

u>2b2

{ - u>2b2

exp(37o> cc (25)

In order to eliminate secular terms (i.e., terms proportional to
the factor T0 exp(/o>7o)§ from «2, we must put

(26)

Substituting Eq. (24) into Eq. (26), then separating the
result into real and imaginary parts, and returning to the
original time scale and coefficients, we obtain

M 02 -
dt 2 8

d/3
dt

co2b2
8co a2

(27)

(28)

where a = €l/2a and it is implied that a^Q. Equation (27) can
be solved for a, and the result can then be used to obtain /3

§If u2 contains this factor, then I u2 \ / \ u\ \ will grow without
bound as t approaches inifinity. Such an expansion is useful over a
limited time. Here we seek the expansion for which I u21 /1 u\ \ remains
bounded.
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Table 2 Amplitudes and periods (T) of the limit cycles and positions
of the saddle points for different angles of attack

Amplitude

a

15
21.5
22.5
25

Numerical
simulation

__ •_
28.28
31.52
33.14

Analytical
model
_ •_
28.79
31.49
32.94

ro>/27T

_ . _

1.11
1.15
1.18

YIQ
__ .

±54.12
±52.06
±50.45

from Eq. (28). The results are

a = :

where

(29)

(30)

(31)

in which 50 is the initial amplitude and /30 is the initial phase.
Substituting these results into Eqs. (22) and (17), we find

that the first approximation to the solution of Eq. (6) is

K exp( - (32)

where j8 and # are given by Eqs. (30) and (31), respectively. It
should be noted that e does not appear in the final result; the
#o represents the actual value of the initial amplitude.

It follows from Eq. (32) that, if pi is less than zero, $ decays
approximately in proportion to expO/z/^O, similar to the be-
havior of a linear damped oscillator. On the other hand, if pi
is greater than zero,

(33)

as ? —oo. The amplitude of the long-time motion is indepen-
dent of the initial conditions; this is the amplitude of the limit
cycle shown in Figs. 4b and 4c. When a limit cycle develops,
it follows from Eq. (28) that the frequency is approximately
given by

d
s(«/ + ffl = « +

It follows that the period is

27T

-- —
CO

(34)

(35a)

(35b)

Finally, we note that the limit-cycle amplitude can be ob-
tained directly from Eq. (27) by setting da/dt = 0, and the
corresponding value of d/3/dt can be obtained directly from
Eq. (28).

The results are summarized in Table 2 where the amplitude
and period of the limit cycles and the positions of the saddle
points are given as functions of angle of attack. As the angle
of attack increases, the amplitude and period also increase.
For angles of attack greater than 27 deg, the numerical simula-
tion no longer agrees well with the observations. The differ-
ence is most likely the result of vortex bursting, a phenomenon
that is not modeled by the numerical simulation and hence not
described by the present expression for the moment.

Concluding Remarks
Earlier numerical simulations of the subsonic wing-rock

phenomenon for slender delta wings, which agreed closely
with wind-tunnel experiments, provided the roll moment as a
function of time. These numerical data can be accurately fit by
a five-term, third-order polynomial in roll angle and roll rate.
In the present paper, this polynomial is used to construct
phase planes that show the locations of equilibrium positions,
limit cycles, and domains of initial conditions that lead to the
different possible motions. In addition, the use of this polyno-
mial in the equation of motion makes it possible to obtain
asymptotic approximations to the expressions for limit-cycle
amplitudes arid periods. The asymptotic results are in close
agreement with numerical solutions of the equation of motion
based on the polynomial expression for roll moment, which in
turn are in close agreement with the numerical simulations and
wind-tunnel observations. The present analysis provides an-
other view of the wing-rock phenomenon.
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